Helium


Helium is a chemical element with symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas that heads the noble gas group in the periodic table. Its boiling and melting points are the lowest among the elements and it exists only as a gas except in extreme conditions.
Helium is the second lightest element and is the second most abundant element in the observable universe, being present at about 24% of the total elemental mass, which is more than 12 times the mass of all the heavier elements combined. Its abundance is similar to this figure in the Sim and in Jupiter. This is due to the very high nuclear binding energy (per nucleon) of helium-4 with respect to the next three elements after helium. This helium-4 binding energy also accounts for why it is a product of both nuclear fusion and radioactive decay. Most helium in the universe is helium-4, and is believed to have been formed during the Big Bang. Large amounts of new helium are being created by nuclear fusion of hydrogen in stars.
Helium is used in cryogenics (its largest single use, absorbing about a quarter of production), particularly in the cooling of superconducting magnets, with the main commercial application being in MRI scanners. Helium's other industrial uses—as a pressurizing and purge gas, as a protective atmosphere for arc welding and in processes such as growing crystals to make silicon wafers—account for half of the gas produced. A well-known but minor use is as a lifting gas in balloons and airships. As with any gas whose density differs from that of air, inhaling a small volume of helium temporarily changes the timbre and quality of the human voice. In scientific research, the behavior of the two fluid phases of helium-4 (helium I and helium II) is important to researchers studying quantum mechanics (in particular the property of super fluidity) and to those looking at the phenomena, such as superconductivity, produced in matter near absolute zero.
While balloons are perhaps the most well-known use of helium, they are a minor part of all helium use. Helium is used for many purposes that require some of its unique properties, such as its low boiling point, low density, low solubility, high thermal conductivity, or inertness. Of the 2008 world helium total production of about 32 million kg (193 million standard cubic meters) helium per year, the largest use (about 22% of the total in 2008) is in cryogenic applications, most of which involves cooling the superconducting magnets in medical MRI scanners. Other major uses (totally about 60% of use in 1996) were pressurizing and purging systems, maintenance of controlled atmospheres, welding, and leak detection. Other uses by category were relatively minor fractions.
Helium is used as a protective gas in growing silicon and germanium crystals, in titanium and zirconium production and in gas chromatography, because it is inert. Because of its inertness, thermally and calorically perfect nature, high speed of sound, and high value of the heat capacity ratio, it is also useful in supersonic wind tunnelsand impulse facilities.
Helium is used as a shielding gas in arc welding processes on materials that at welding temperatures are contaminated and weakened by air or nitrogen. A number of inert shielding gases are used in gas tungsten arc welding, but helium is used instead of cheaper argon especially for welding materials that have higher heat conductivity, like aluminium or copper.